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TECHNICAL MEMORANDUM X-64869

ATMOSPHERIC CONVECTIVE VELOCITIES
AND THE FOURIER PHASE SPECTRUM

INTRODUCTION

The equations of motion for the near-ground atmospheric houndary
layer have proven difficult to solve in closed form. The need for a solution or
simulation of the statistic:.l Fehavior of the atmospheric boundary layer for
aerospace and aeronautical applications is ever increasing with the engineering
demands for sophistication in the modeling of wind loads for stress and harmonic
analyses of spacecraft and conventional aircraft. Because solutions of the
equations of motion for the atmospheric turbulent boundary layer have proven so
elusive, it appears more fruitful to turn to boundary layer modeling or statisti-
cal simulation concepts,

The modeling or statistical simulation of the atmospheric boundary
laver is controlled by the physical motion of the undulations or fluctuations of
the velocity field. Organized fluid structures are responsible for fluctuations
that deviate from the mean. The examination of organized fluid structures
embedded within the houndary layer would give valuable insight into the under-
standing of the physical flow structure and present one piece of the puzzle neces-
sary for the statistical simulation of nur natural environment.

Organized fluid structures (sometimes referred to as ""packets of vor-
ticity'" or. more loosely, as "eddies") which are embedded within the atmo-
spheric boundary layer play a key role in ihe dynamics of the fluid motion. The
velocity with which these structures move is termed '"convective velocity. " The
relative motion of the organized structures with respect to the mean motion in
regions of high shear is yet to be firmly understood, although a likely first
assumption is that the mean motion is the forcing function driving the structures,
The high shear region (where little is known concerning convective velocities)
of the atmospheric boundary layer consists of approximately the first 159
meters [1].

The purpose of this report is to present a method by w’ ich a more inti-
mate knowledge of the organized structure motion embedded in the atmospheric
boundary layer may be obtained by employing a variation of the Fourier phase
spectrum of the space-time correlation.



BACKGROUND

In 1915 G. 1. Taylor examined "eddy' motion in the atmosphere and
made the first documented statement about the convective transport ability of
the "eddy' when he said, "It seems natural to suppose that eddies will transfer
not only the heat and water vapor, but also the momentum of the layer in which
they originated to the layer with which they mix" {2]. Thus, if an eddy moves
from a layer of low momentum to one of a higher momentum, one can imagine
that the eddy will have a momentum different from the new layer until the eddy
has been acted upon by the new layer for a sufficiently long dwell time for the
eddy to come into equilibrium with the new layer. In 1917 Taylor performed
experimen' 3 to map the shape of eddies in the atmosphere and found the shape
to be dependent upon the elevation above the ground [3] . Taylor then went on
in 1938 to publish the relationship between correlation measurements and
spectra [4]. This study laid the foundation for future work using correlation
measurements to describe particular motions of selected portions of the spec-
trum. It is here that Taylor gave insight into the motions of eddy structures as
compared with mean fluid motions. He stated, "If the velocity of the air stream
which carries the eddies is very much greater than the turbulent velocity, one
may assume that the sequence of changes in u' at the fixed point are simply due
to the passage of an unchanging pattern of turbulent motion over the point, i.e.,
one may assure that

el = HXAV) L, (1)

where X is measured upstream at time t = 0 from the fixed point where u is
measured. In the limit when u'/V m>0 (7) is certainly true. Assuming that

(7) is still true when u'/V m is small but not zero, R, is defined as

o(t) o(t+ X/Vm)

X u.z

R

This quote later became known as Taylor's hypothesis. Taylor's hypothesis
has since been checked for grid-generated turbulence many times [5-9].

Since 1938, when Taylor first published what i8 now known as Taylor's
hypothesis, the scientific community has attempted to use the hypothesis in



areas which do not rigidly conform to Taylor's original criteria. One such area
is the atmospheric boundary layer. Here the turbulent velocity may not be small
compared to the mean velocity and, thus, does not conform to the constraints of
Taylor's hypothesis. In general, regions of high shear will have turbulent veloci-
ties which may not be considered small when compared to the mean velocity.

Measured convective velocities in wind tunnel boundary layer flows have
proven to be, in general, different from the local mean velocity [16-21]. Atmo-
spheric research in the area of convective velocities has been avoided in the past
partly due to the physical complexities of obtaining space~time correlations in
the field. Limited measurements in this area have been performed by Powell
[22]. Powell's results indicate that Taylor's hypothesis is not valid for the
atmospheric boundary layer near the earth's surface for frequencies below ap-
proximately 0, 1 Hz, which is the spectral region containing the preponderance
of energy. Similarly, Cliff and Sandborn [10] noted that the higher the frequency,
the closer the convective velocity approached the local mean in wind tunnel
boundary layers. If the eddies do not move at the same rate as the local mean
flow, the transformation from time domain statistics to space domain statistics
is not a linear relationship as expressed in Taylor's hypothesis. This means
that transforming Eulerian time statistics to Eulerian space statistics using
Taylor's hypothesis could lead to improper turbulent length scales as well as
spectra. That is, a large, fast-moving structure and a smaller, slow-moving
structure could theorelically produce the same time frequency.

THEORETICAL ANALYSES

Convective velocities are most commonly measured by employing two
velocity sensors spatially separated in the mean flow direction. The outputs of
the two sensors are cross correlated with a varying time delay. A peak will
occur in the cross correlation at the most probhable time delay for which the
signals are most similar. The convective velocity would then be equal to the
separation distance divided by the most probable time delay. The cross corre-
lation of the functions f(t) and g(t) would be expressed as:

Cfg(X,Y,Z,g,T,'r)z f(X,Y,Z,t) g(X+ £,Y,Z2,t47) . (1)

For generality the coordinate system has been chosen such that the mean flow
direction is the X-axis. The overbarred quantity is the time average over the
sample record length T, which may be expressed as:

3



T
B
() Tf()dt , (2)
0

If the process is horizontally homogeneous and stationary and we note that Z and
¢ are fixed (i.e., constants) for thie particular operation, the expression for
the correlation function would be:

Crgl™) = XY, 2,0) g(X4 £.Y,Z, ¢4 7) . (3)

Figure 1 presents graphically what the cross correlation would look like
and the method used to compute the convective velocity. (It should be noted that
for the correlation concepts presented here one may or may not wish to have the
means subtracted from the data. Correlation with the means not removed merely
shifts tne abscissa up or down and does not affect the location of the optimum
time delay necessary for the computation of the convective velocity. )

It should also be mentioned that one may use a fixed time delay and vary
the separation distance to locate an optimum separation length rather than an
optimum time delay. The convective velocity is then evaluated by dividing the
optimum separation distance by the selected time delay. The differences be-
tween the f'<xed separation and fixed time delay methods of computing the con-
vective velocity are discussed in detail by Cliff and Sandborn [10].

If one desires to look at the convective velocity of an individual frequency
(frequency being a function of size and the velocity with which the fluid structure
is swept past the Eulerian sensor), the correlating functions could be filtered
for that particular frequency and the regular rules for evaluating the conveciive
velocity would apply. If the measurement is performed in a high shear region
where Taylor's hypothesis is not valid, the convective velocity could become a
function of frequency. Figure 2 is such a case obtained in a flat plate wind
tunnel boundary layer [10]. Note the shifting optimum time delay as a function
of frequency. The optimum time delay shifting indicates that the convective
velocity is a function of frequency. Thus, if one can relate size and frequency,
the convective velocity then becomes a function of size.

In a region where Taylor's hypothesis could be considered valid, all
harmonics (frequencies) would move at the same velocity and the optimum time
delay would be independent of frequency (i.e., a constant equal to the separation
distance divided by the mean velocity of the flow). Figure 3 is an example of
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Figure 1. Convective veloceity evaluation,

such a case, which was also found in a wind tunnel after the fluid structures had
been imbedded in the flow for a sufficiently long dwell time for the structures to
come into equilibrium with the mean motion in the outer portion of the boundary
layer [10]. Note that the optimum time delay is independent of the frequency at
which the signals were filtered.

Rather than filtering at each frequency, the convective velocity may be
obtained by examining the phase shifts of the individual harmonics between the
velocity sensed upstream and the velocity sengsed downstream. The phase
analysis is performed by considering the Fourier representations of the two
time functions used for the cross correlation, f(t) and g(t), Since in practice
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we generally deal with data records of finite length, we shall use the Fourier
series representation of the functions rather than the integral forms,

Consider the two time functions and their respective Fourier transforms:

> Znnt . 2nnt
£(t) -'-'-azl + ;’ + by, sin T
(4)
= 2 + E” (a®, + b? )% cos'.(z'mt 0 .n)
3 Ly n n £n
n-—

and

]

g(t) -cz-°- + Z C,, €08 2’.}"‘ + dnsin-gl.r'lt—
n=1

(5)

2nnt
+ b’n)yz cos( "T - ag,n) )

i
Nl

+
g

where 0 f and 0 n represent the phase shift of the nth harmonic at the origin

14 ’

ot _ -1
and Gf,n = tan (bn/an) and Gg,n = tan (dn/cn).

The correlation of the functions f(t) and g(t) then becomes:

T oo
1 nr
Cfg(f) ='='r-0f f() gt +r)dt = E [ c cosl.'r—-
(6)
+ agd, sin 2'.;.’" - by ¢, sin 2'.'1.“’ + b,d, cos 2;"']



Since the correlation function may be thought of as a function itself without
regard to the processes which created the correlation, one may write the cor-
relation in a general Fourier expansion of its own as:

Cg (1 = L+ ), eqcos 2'.'1."' + fnsin-z—!-ru
& n=l

(7)

=%1 +), (e, ¢ )% cos -HP-T- - ac,n) :
n=1

where Gc n is the phase shift from the origin of the nth harmonic and ()c n<
tan~! (fn/en). The values of the original time functions which represent fn and
e, may now be taken from equation (6), yielding an expression for GC n in

v

terms of the phase shifts of the original time functions.

dn_Pn
8 = tan” ':—: = tan? ::S: ;:::l: = tan lc:b_naréﬂ_
a, ¢, (8)
= tan” ltinfa‘n%‘g.,:at::fgn = tan” [tan (8, ,-0; )],
Thus,
fo.n= Og.n- Of.n (9)

The interpretation of equation (9) is as follows: '"The phase of the nth harmonic
of the correlation is equal to the difference of the starting phases of the nth
harmonics of the original time series from which the correlation was derived. "



A special case results when f(t) equals g(t); that is, the correlation function
becomes the autocorrelation function. For this case gg n would be identical

with 64 ., and thus 6 would be identically zero for all harmonics. That the

c,n
phase spectrum of the autocorrelation is everywhere equal to zero is well known
and may also be derived by considering the evenness of the autocorrelation.

The correlation receives its major contribution from the nth harmonic
when

2rnT \
cos( T 'Oc,n) = 1 ; (11)

that is, when

2m™nT

fcn= 7 = 2rir . (12)

If all of the waves traveled such that they peaked at approximately the same time
delay, the correlation curve would have a pronounced maximura. The optimum
time delay for the nth harmonic can now be calculated from equation (11):

0.,
EATALY (13)

T
m 2nf

And, finally, the convective velocity may be written as a function of the phase
spectrumr of the cross correlation. Noting the method for determining the con-
vective velocity as heing the separation distance divided by the optimum time
delay, the convective velocity hecomes:

A% = 2nf€ /0 , (14)

where Vc n is the convective velocity of the nth harmonic.

Equation (14) now gives a means to plot the convective velocity from the
Fourier phase spectrum of the cross correlation, Figure 4 gives a graphical
picture of what equation (14) plotted against frequency should be for Taylor's

10



Taylor's Hypothesis
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>U
(Vc n is the convective velocity of the nth harmonic)
»
(6c n is the correlation phase of the n'Ch harmonic)
’
0
0

f (frequency Hz)

Figure 4, Ccnvective velocity versus frequency.

hypothesis to be valid and to be invalid. The case of Taylor's hypothesis being

invalid is represented by dashed lines in Figure 4. The top dashed line indicates
that fluid structures are migrating from a region of higher momentum to a region

of lower momentum. The lower dashed line indicates that the fluid structures

are migrating from a region of lower momentum to a region of higher momentum,

The shapes of the dashed lines are indicative of Cliff and Sandborn's model [10]
predicting that the higher the frequency sampled, the nearer the convective

velocity is to the mean, This seems reasonable since in turbulent shear layers
the amplitude of the spectrum decreases with increasing frequency such that the
limit as f —» oo, a, - 0, where a, is the Fourier amplitude of the nth harmonic.

That is to say, one may wish to hypcthesize that even in high shear regions

11



Taylor's hypothesis may be approached when the Fourier amplitude of the fre-
quency sampled becomes much, much smaller than the mean velocity. The
level line of Figure 4 represents the case where Taylor's hypothesis holds.
Here all harmonics convect at the same velocity, which is very nearly the mean
velocity.

DISCUSSiON AND CONC LUSIONS

A method of calculating the convective velocity employing a variation of
the Fourier phase spectrum is developed. The convective velocity spectrum is
shown to yield information concerning the ejuilibrium of the fluid structures and
the mean flow,

If fluid structures are in equilibrium with the surrounding fluid, no ac-
celeration or deceleration of the structure (eddy) would be expected and the
structure should move with the mean motion of the fluid within which the struc-
ture is embedded. If the fluid structure is not in equilibrium with the surround-
ing fluid (such as an eddy propagating from a region of lower momentum to a
region of higher momentum ), one would suspect that the fluid structure would
not he moving with the mean motion of the new layer tc which it migrated until
the structure had been acted upon by the new layer for a sufficiently long dwell
time. For the latter case the convective velocity of the structure (eddy) would
be “ifferent from the local mean velocity. Thus, transforming time statistics
to space statistics for the second case would be misleading if Taylor's hypoth-
esis was used. It now becomes evident that more work needs to be performed
in the area of convective velocities in the high shear regions of the atmospheric
boundary layer if one wishes to convert time statistics to space statistics in
these shear regions, such as the lower portions of the atmosphere.

12
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